Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.453
Filtrar
1.
PLoS One ; 19(4): e0301447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557762

RESUMO

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Assuntos
Furilfuramida , Tretinoína , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Ligantes , Tretinoína/farmacologia , Tretinoína/metabolismo , Epiderme/metabolismo , Receptores Citoplasmáticos e Nucleares
2.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , 60611 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Commun Biol ; 7(1): 371, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575811

RESUMO

Cardiac function requires appropriate proteins in each chamber. Atria requires slow myosin to act as reservoirs, while ventricles demand fast myosin for swift pumping. Myosins are thus under chamber-biased cis-regulation, with myosin gene expression imbalances leading to congenital heart dysfunction. To identify regulatory inputs leading to cardiac chamber-biased expression, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives preferential expression to the atria. We show that SMyHC III gene states are orchestrated by a complex Nuclear Receptor Element (cNRE) of 32 base pairs. Using transgenesis in zebrafish and mice, we demonstrate that preferential atrial expression is achieved by a combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Using comparative genomics, we show that the cNRE might have emerged from an endogenous viral element through infection of an ancestral host germline, revealing an evolutionary pathway to cardiac chamber-specific expression.


Assuntos
Átrios do Coração , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/genética , Átrios do Coração/metabolismo , Ventrículos do Coração , Miosinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Am J Chin Med ; 52(2): 291-314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480498

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with a high prevalence and increasing economic burden, but official medicine remains unavailable. Farnesoid X receptor (FXR), a nuclear receptor member, is one of the most promising drug targets for NAFLD therapy that plays a crucial role in modulating bile acid, glucose, and lipid homeostasis, as well as inhibits hepatic inflammation and fibrosis. However, the rejection of the FXR agonist, obecholic acid, by the Food and Drug Administration for treating hepatic fibrosis raises a question about the functions of FXR in NAFLD progression and the therapeutic strategy to be used. Natural products, such as FXR modulators, have become the focus of attention for NAFLD therapy with fewer adverse reactions. The anti-NAFLD mechanisms seem to act as FXR agonists and antagonists or are involved in the FXR signaling pathway activation, indicating a promising target of FXR therapeutic prospects using natural products. This review discusses the effective mechanisms of FXR in NAFLD alleviation, and summarizes currently available natural products such as silymarin, glycyrrhizin, cycloastragenol, berberine, and gypenosides, for targeting FXR, which can facilitate development of naturally targeted drug by medicinal specialists for effective treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia , Fígado/metabolismo
5.
Clin Transl Sci ; 17(3): e13746, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501263

RESUMO

Aminobenzotriazole (ABT) is commonly used as a non-selective inhibitor of cytochrome P450 (CYP) enzymes to assign contributions of CYP versus non-CYP pathways to the metabolism of new chemical entities. Despite widespread use, a systematic review of the drug-drug interaction (DDI) potential for ABT has not been published nor have the implications for using it in plated hepatocyte models for low clearance reaction phenotyping. The goal being to investigate the utility of ABT as a pan-CYP inhibitor for reaction phenotyping of low clearance compounds by evaluating stability over the incubation period, inhibition potential against UGT and sulfotransferase enzymes, and interaction with nuclear receptors involved in the regulation of drug metabolizing enzymes and transporters. Induction potential for additional inhibitors used to ascribe fraction metabolism (fm ), pathway including erythromycin, ketoconazole, azamulin, atipamezole, ZY12201, and quinidine was also investigated. ABT significantly inhibited the clearance of a non-selective UGT substrate 4-methylumbelliferone, with several UGTs shown to be inhibited using selective probe substrates in human hepatocytes and rUGTs. The inhibitors screened in the induction assay were shown to induce enzymes regulated through Aryl Hydrocarbon Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor. Lastly, a case study identifying the mechanisms of a clinical DDI between Palbociclib and ARV-471 is provided as an example of the potential consequences of using ABT to derive fm . This work demonstrates that ABT is not an ideal pan-CYP inhibitor for reaction phenotyping of low clearance compounds and establishes a workflow that can be used to enable robust characterization of other prospective inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517202

RESUMO

BACKGROUND: Bile salts of hepatic and microbial origin mediate interorgan cross talk in the gut-liver axis. Here, we assessed whether the newly discovered class of microbial bile salt conjugates (MBSCs) activate the main host bile salt receptors (Takeda G protein-coupled receptor 5 [TGR5] and farnesoid X receptor [FXR]) and enter the human systemic and enterohepatic circulation. METHODS: N-amidates of (chenodeoxy) cholic acid and leucine, tyrosine, and phenylalanine were synthesized. Receptor activation was studied in cell-free and cell-based assays. MBSCs were quantified in mesenteric and portal blood and bile of patients undergoing pancreatic surgery. RESULTS: MBSCs were activating ligands of TGR5 as evidenced by recruitment of Gsα protein, activation of a cAMP-driven reporter, and diminution of lipopolysaccharide-induced cytokine release from macrophages. Intestine-enriched and liver-enriched FXR isoforms were both activated by MBSCs, provided that a bile salt importer was present. The affinity of MBSCs for TGR5 and FXR was not superior to host-derived bile salt conjugates. Individual MBSCs were generally not detected (ie, < 2.5 nmol/L) in human mesenteric or portal blood, but Leu-variant and Phe-variant were readily measurable in bile, where MBSCs comprised up to 213 ppm of biliary bile salts. CONCLUSIONS: MBSCs activate the cell surface receptor TGR5 and the transcription factor FXR and are substrates for intestinal (apical sodium-dependent bile acid transporter) and hepatic (Na+ taurocholate co-transporting protein) transporters. Their entry into the human circulation is, however, nonsubstantial. Given low systemic levels and a surplus of other equipotent bile salt species, the studied MBSCs are unlikely to have an impact on enterohepatic TGR5/FXR signaling in humans. The origin and function of biliary MBSCs remain to be determined.


Assuntos
Ácidos e Sais Biliares , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G , Humanos , Bile/química , Ácidos e Sais Biliares/farmacologia , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição , Receptores Acoplados a Proteínas G/metabolismo
7.
Commun Biol ; 7(1): 376, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548902

RESUMO

Expanded intronic G4C2 repeats in the C9ORF72 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These intronic repeats are translated through a non-AUG-dependent mechanism into five different dipeptide repeat proteins (DPRs), including poly-glycine-arginine (GR), which is aggregation-prone and neurotoxic. Here, we report that Kapß2 and GR interact, co-aggregating, in cultured neurons in-vitro and CNS tissue in-vivo. Importantly, this interaction significantly decreased the risk of death of cultured GR-expressing neurons. Downregulation of Kapß2 is detrimental to their survival, whereas increased Kapß2 levels mitigated GR-mediated neurotoxicity. As expected, GR-expressing neurons displayed TDP-43 nuclear loss. Raising Kapß2 levels did not restore TDP-43 into the nucleus, nor did alter the dynamic properties of GR aggregates. Overall, our findings support the design of therapeutic strategies aimed at up-regulating Kapß2 expression levels as a potential new avenue for contrasting neurodegeneration in C9orf72-ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Transporte Ativo do Núcleo Celular , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
8.
J Med Chem ; 67(7): 5642-5661, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38547240

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Colo , Mucosa Intestinal/metabolismo
9.
Cancer Metastasis Rev ; 43(1): 321-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517618

RESUMO

Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Plasticidade Celular/fisiologia , Neoplasias/patologia , Transdução de Sinais , Transição Epitelial-Mesenquimal/fisiologia , Resistencia a Medicamentos Antineoplásicos , Receptores Citoplasmáticos e Nucleares/metabolismo , Células-Tronco Neoplásicas/patologia
10.
Curr Opin Pharmacol ; 75: 102439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447458

RESUMO

To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.


Assuntos
60709 , Degeneração Macular , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Envelhecimento/fisiologia , Receptores Citoplasmáticos e Nucleares , Olho/metabolismo
11.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466721

RESUMO

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Assuntos
Aedes , Receptores de Esteroides , Animais , Feminino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vetores/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homeostase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
12.
Cell Death Dis ; 15(3): 234, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531859

RESUMO

Dysregulated activation of Wnt/ß-catenin signaling pathway is a frequent or common event during advanced progression of multiple cancers. With this signaling activation, it enhances their tumorigenic growth and facilitates metastasis and therapy resistance. Advances show that this signaling pathway can play dual regulatory roles in the control of cellular processes epithelial-mesenchymal transition (EMT) and cancer stemness in cancer progression. Aberrant activation of Wnt/ß-catenin signaling pathway is shown to be common in prostate cancer and also castration-resistant prostate cancer (CRPC). However, the transcriptional regulators of this pathway in prostate cancer are still not well characterized. NURR1 (NR4A2) is an orphan nuclear receptor and plays an important role in the development of dopaminergic neurons. Previously, we have shown that NURR1 exhibits an upregulation in isolated prostate cancer stem-like cells (PCSCs) and a xenograft model of CRPC. In this study, we further confirmed that NURR1 exhibited an upregulation in prostate cancer and also enhanced expression in prostate cancer cell lines. Functional and molecular analyses showed that NURR1 could act to promote both in vitro (cancer stemness and EMT) and also in vivo oncogenic growth of prostate cancer cells (metastasis and castration resistance) via its direct transactivation of CTNNB1 (ß-catenin) and activation of ß-catenin to mediate the activation of Wnt/ß-catenin signaling pathway. Moreover, we also demonstrated that NURR1 activity in prostate cancer cells could be modulated by small molecules, implicating that NURR1 could be a potential therapeutic target for advanced prostate cancer management.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Via de Sinalização Wnt , Masculino , Humanos , beta Catenina/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores Citoplasmáticos e Nucleares , Linhagem Celular Tumoral
13.
Nat Commun ; 15(1): 2563, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519460

RESUMO

Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.


Assuntos
Receptor Constitutivo de Androstano , Microbiota , Camundongos , Animais , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Hepatócitos/metabolismo , Ligantes
14.
Biomed Pharmacother ; 173: 116331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428307

RESUMO

Farnesoid X receptor (FXR) plays a pivotal role in the regulation of bile acid homeostasis and is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Although FXR agonists effectively alleviate pathological features of NASH, adverse effects such as disturbance of cholesterol homeostasis and occurrence of pruritus remain to be addressed. Here, we identified a novel FXR agonist, ID119031166 (ID166), and explored the pharmacological benefits of ID166 in the treatment of NASH. ID166, a potent and selective non-bile acid FXR agonist, exhibits preferential distribution in the intestine and shows no agonist activity against potential itch receptors including Mas-related G protein-coupled receptor X4 (MRGPRX4). Interestingly, ID166 significantly attenuated total nonalcoholic fatty liver disease (NAFLD) activity and liver fibrosis in a free choice diet-induced NASH hamster model. In addition, ID166 drastically modulated the relative abundance of five gut microbes and reduced the increase in plasma total bile acid levels to normal levels in NASH hamsters. Moreover, long-term treatment with ID166 significantly improved key histological features of NASH and liver fibrosis in a diet-induced NASH mouse model. In the NASH mouse livers, RNA-seq analysis revealed that ID166 reduced the gene expression changes associated with both NASH and liver fibrosis. Notably, ID166 exhibited no substantial effects on scratching behavior and serum IL-31 levels in mice. Our findings suggest that ID166, a novel FXR agonist with improved pharmacological properties, provides a preclinical basis to optimize clinical benefits for NASH drug development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado , Cirrose Hepática/metabolismo , Ácidos e Sais Biliares/metabolismo
15.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542397

RESUMO

Aspirin is a non-steroidal, anti-inflammatory drug often used long term. However, long-term or large doses will cause gastrointestinal adverse reactions. To explore the mechanism of intestinal damage, we used non-targeted metabolomics; farnesoid X receptor (FXR) knockout mice, which were compared with wild-type mice; FXR agonists obeticholic acid (OCA) and chenodeoxycholic acid (CDCA); and endothelin-producing inhibitor estradiol to explore the mechanisms of acute and chronic intestinal injuries induced by aspirin from the perspective of molecular biology. Changes were found in the bile acids taurocholate acid (TCA) and tauro-ß-muricholic acid (T-ß-MCA) in the duodenum, and we detected a significant inhibition of FXR target genes. After additional administration of the FXR agonists OCA and CDCA, duodenal villus damage and inflammation were effectively improved. The results in the FXR knockout mice and wild-type mice showed that the overexpression of endothelin 1 (ET-1) was independent of FXR regulation after aspirin exposure, whereas CDCA was able to restore the activation of ET-1, which was induced by aspirin in wild-type mice in an FXR-dependent manner. The inhibition of ET-1 production could also effectively protect against small bowel damage. Therefore, the study revealed the key roles of the FXR and ET-1 pathways in acute and chronic aspirin-induced intestinal injuries, as well as strategies on alleviating aspirin-induced gastrointestinal injury by activating FXR and inhibiting ET-1 overexpression.


Assuntos
Aspirina , Receptores Citoplasmáticos e Nucleares , Animais , Camundongos , Aspirina/efeitos adversos , Receptores Citoplasmáticos e Nucleares/genética , Intestinos , Ácidos e Sais Biliares/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Transdução de Sinais , Camundongos Knockout
16.
Eur J Med Chem ; 269: 116344, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522113

RESUMO

Liver fibrosis is commonly occurred in chronic liver diseases, but there is no approved drug for clinical use. The nuclear receptor peroxisome proliferator-activated receptors (PPARs) could not only regulate metabolic homeostasis but also possess anti-inflammatory and antifibrotic effects, and pan-PPARs agonist was considered as a potential anti-liver fibrosis agent. In this study, a series of novel piperazine pan-PPARs agonists were developed, and the preferred compound 12 displayed potent and well-balanced pan-PPARs agonistic activity. Moreover, compound 12 could dose-dependently stimulate the PPARs target genes expression and showed high selectivity over other related nuclear receptors. Importantly, compound 12 exhibited excellent pharmacokinetic profiles and good anti-liver fibrosis effects in vivo. Collectively, compound 12 holds promise for developing an anti-liver fibrosis agent.


Assuntos
Compostos Heterocíclicos , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Cirrose Hepática/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares , Hipoglicemiantes , Piperazinas
17.
Orphanet J Rare Dis ; 19(1): 79, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378692

RESUMO

BACKGROUND: TBL1XR1 encodes a F-box-like/WD40 repeat-containing protein that plays a role in transcription mediated by nuclear receptors and is a known genetic cause of neurodevelopmental disease of childhood (OMIM# 608628). Yet the developmental trajectory and progression of neurologic symptoms over time remains poorly understood. METHODS: We developed and distributed a survey to two closed Facebook groups devoted to families of patients with TBL1XR1-related disorder. The survey consisted of 14 subsections focused upon the developmental trajectories of cognitive, behavioral, motor, and other neurological abnormalities. Data were collected and managed using REDCap electronic data capture tools. RESULTS: Caregivers of 41 patients with a TBL1XR1-related disorder completed the cross-sectional survey. All reported variants affecting a single amino acid, including missense mutations and in-frame deletions, were found in the WD40 repeat regions of Tbl1xr1. These are domains considered important for protein-protein interactions that may plausibly underlie disease pathology. The majority of patients were diagnosed with a neurologic condition before they received their genetic diagnosis. Language appeared most significantly affected with only a minority of the cohort achieving more advanced milestones in this domain. CONCLUSION: TBL1XR1-related disorder encompasses a spectrum of clinical presentations, marked by early developmental delay ranging in severity, with a subset of patients experiencing developmental regression in later childhood.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Estudos Transversais , Mutação de Sentido Incorreto/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética
18.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422483

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Humanos , Receptores Citoplasmáticos e Nucleares , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo
20.
Arch Toxicol ; 98(5): 1311-1322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416141

RESUMO

Marine biotoxins are a heterogenous group of natural toxins, which are able to trigger different types of toxicological responses in animals and humans. Health effects arising from exposure to marine biotoxins are ranging, for example, from gastrointestinal symptoms to neurological effects, depending on the individual toxin(s) ingested. Recent research has shown that the marine biotoxin okadaic acid (OA) can strongly diminish the expression of drug-metabolizing cytochrome P450 (CYP) enzymes in human liver cells by a mechanism involving proinflammatory signaling. By doing so, OA may interfere with the metabolic barrier function of liver and intestine, and thus alter the toxico- or pharmacokinetic properties of other compounds. Such effects of marine biotoxins on drug and xenobiotic metabolism have, however, not been much in the focus of research yet. In this review, we present the current knowledge on the effects of marine biotoxins on CYP enzymes in mammalian cells. In addition, the role of CYP-regulating nuclear receptors as well as inflammatory signaling in the regulation of CYPs by marine biotoxins is discussed. Strong evidence is available for effects of OA on CYP enzymes, along with information about possible molecular mechanisms. For other marine biotoxins, knowledge on effects on drug metabolism, however, is scarce.


Assuntos
Sistema Enzimático do Citocromo P-450 , Toxinas Marinhas , Animais , Humanos , Toxinas Marinhas/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Okadáico , Fígado , Receptores Citoplasmáticos e Nucleares , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...